$\int e^x\left(\frac{1-x}{1+x^2}\right)^2 dx$ is equal to |
$\frac{e^x}{1+x^2}+C$: C is an arbitrary constant $\frac{e^x}{(1+x^2)^2}+C$: C is an arbitrary constant $\frac{-e^x}{(1+x^2)^2}+C$: C is an arbitrary constant $\frac{-e^x}{1+x^2}+C$: C is an arbitrary constant |
$\frac{e^x}{1+x^2}+C$: C is an arbitrary constant |
The correct answer is Option (1) → $\frac{e^x}{1+x^2}+C$: C is an arbitrary constant $I=\int e^x\left(\frac{1-x}{1+x^2}\right)^2 dx$ Rewrite denominator: $(1-x)^2=1-2x+x^2$ $I=\int \frac{e^x(1-2x+x^2)}{(1+x^2)^2} dx$ Let $u=\frac{e^x}{1+x^2}$ $\frac{du}{dx}=\frac{e^x(1+x^2)-2xe^x}{(1+x^2)^2}$ $\frac{du}{dx}=\frac{e^x(1-2x+x^2)}{(1+x^2)^2}$ So, $\frac{du}{dx}=\frac{e^x(1-x)^2}{(1+x^2)^2}$ Hence, $I=\int \frac{e^x(1-x)^2}{(1+x^2)^2}dx=\int du=u+C$ $I=\frac{e^x}{1+x^2}+C$ |