The ratio in which the plane $\vec{r}. (\hat{i}- 2\hat{j} + 3\hat{k}) = 17 $ divides the line joining points $-2\hat{i} + 4\hat{j} + 7 \hat{k} $ and $ 3\hat{i} - 5\hat{j} + 8 \hat{k}$ is |
3 : 5 1 : 10 3 : 10 1 : 5 |
3 : 10 |
Let the required ratio be λ : 1. Then, the position vector of the point of division is $\frac{(-2\hat{i} + 4\hat{j} + 7 \hat{k})+λ(3\hat{i} -5\hat{j} + 8 \hat{k})}{λ+1}$ $=\left(\frac{3λ-2}{λ+1}\right)\hat{i}+\left(\frac{4-5λ}{λ+1}\right)\hat{j}+\left(\frac{8λ+7}{λ+1}\right)\hat{k}$ The point of division lies on the plane. $\vec{r}. (\hat{i} -2\hat{j} + 3 \hat{k})=17$ $⇒ \left(\frac{3λ-2}{λ+1}\right)\hat{i} -2\left(\frac{4-5λ}{λ+1}\right)\hat{j}+3\left(\frac{8λ+7}{λ+1}\right)\hat{k}=17$ $⇒ 3λ - 2 - 8 + 10 λ + 24 λ + 21 = 17(λ + 1) $ \(⇒ 3λ + 10λ + 24λ - 17λ = 17 + 2 + 8 - 21\) \(⇒ 20λ = 6\) \(⇒ λ = \frac{6}{20} = \frac{3}{10}\) Hence, the required ratio is 3 : 10. |