The ratio of magnetic fields at the centre of a current carrying a circular loop of radius 16 cm and at a point on its axis at a distance $r$ from its centre is 125 : 64. The value of $r$ is |
6 cm 9 cm 12 cm 15 cm |
12 cm |
The correct answer is Option (3) → 12 cm Magnetic field at the centre of a circular loop: $B_{centre} = \frac{\mu_0 I}{2R}$ Magnetic field on the axis at distance $r$ from centre: $B_{axis} = \frac{\mu_0 I R^2}{2(R^2 + r^2)^{3/2}}$ Given ratio: $\frac{B_{centre}}{B_{axis}} = \frac{125}{64}$ Substitute values: $\frac{\frac{\mu_0 I}{2R}}{\frac{\mu_0 I R^2}{2(R^2 + r^2)^{3/2}}} = \frac{125}{64}$ $\frac{(R^2 + r^2)^{3/2}}{R^3} = \frac{125}{64}$ Radius $R = 16 \, \text{cm}$ $(R^2 + r^2)^{3/2} = \frac{125}{64} R^3$ Take power $2/3$: $R^2 + r^2 = \left(\frac{125}{64}\right)^{2/3} R^2$ $\left(\frac{125}{64}\right)^{2/3} = \left(\frac{5^3}{4^3}\right)^{2/3} = \left(\frac{5}{4}\right)^2 = \frac{25}{16}$ $R^2 + r^2 = \frac{25}{16} R^2$ $r^2 = \frac{25}{16}R^2 - R^2 = \frac{9}{16}R^2$ $r = \frac{3}{4}R$ For $R = 16 \, \text{cm}$: $r = \frac{3}{4} \times 16 = 12 \, \text{cm}$ Final Answer: $r = 12 \, \text{cm}$ |