The value of the definite integral $\int\limits_0^1e^x\frac{(1-x)^2}{(1+x^2)^2}dx$ is: |
$\frac{e}{2}$ $\frac{e}{2}-1$ $\frac{e}{2}+1$ $2e+1$ |
$\frac{e}{2}-1$ |
The correct answer is Option (2) → $\frac{e}{2}-1$ Given $I=\displaystyle\int_{0}^{1} e^{x}\,\frac{(1-x)^{2}}{(1+x^{2})^{2}}\,dx$ Let $g(x)=\frac{1}{1+x^{2}}$. Then $g'(x)=-\frac{2x}{(1+x^{2})^{2}}$ and $g(x)+g'(x)=\frac{1}{1+x^{2}}-\frac{2x}{(1+x^{2})^{2}}=\frac{(1-x)^{2}}{(1+x^{2})^{2}}$ Therefore $e^{x}\frac{(1-x)^{2}}{(1+x^{2})^{2}}=e^{x}\big(g(x)+g'(x)\big)=\frac{d}{dx}\!\left(e^{x}g(x)\right)$ So $I=\left[e^{x}\frac{1}{1+x^{2}}\right]_{0}^{1}=\frac{e}{2}-1$ |