$\int\limits^{\pi}_{0}e^x(tan\, x + sec^2\, x)dx$ |
0 1 -1 $-e^x$ |
0 |
Evaluate $\int_{0}^{\pi} e^x (\tan x + \sec^2 x) \, dx$ Split integral: $\int_{0}^{\pi} e^x \tan x \, dx + \int_{0}^{\pi} e^x \sec^2 x \, dx$ Use integration by parts for $\int e^x \tan x \, dx$: Let $u = \tan x$, $dv = e^x dx \Rightarrow du = \sec^2 x dx$, $v = e^x$ $\int e^x \tan x \, dx = e^x \tan x - \int e^x \sec^2 x \, dx$ Adding $\int e^x \sec^2 x \, dx$ gives: $e^x \tan x - \int e^x \sec^2 x \, dx + \int e^x \sec^2 x \, dx = e^x \tan x$ Evaluate from $0$ to $\pi$: $[e^x \tan x]_0^\pi = e^\pi \tan \pi - e^0 \tan 0 = 0 - 0 = 0$ Answer: $0$ |