By substituting $y=v x$, the solution of the differential equation |
$x^2 y^2=\log x+C$ $\frac{y^2}{2 x^2}=\log x+C$ $\frac{2 y^2}{x^2}=\log x+C$ $\frac{y^2}{x^2}=\log x+C$ |
$\frac{y^2}{2 x^2}=\log x+C$ |
Substituting $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$ in the given differential equation, we get $v+x \frac{d v}{d x}=\frac{1+v^2}{v} \Rightarrow x \frac{d v}{d x}=\frac{1}{v} \Rightarrow v d v=\frac{1}{x} d x$ On integrating, we get $\frac{v^2}{2}=\log x+C \Rightarrow \frac{y^2}{2 x^2}=\log x+C$ |