Value of $int\frac{2}{(x-3)\sqrt{x+1}} dx$ is: (Here C is an arbitrary constant) |
$\log\left|\frac{x-3}{x+1}\right|+C$ $\log\left|\frac{\sqrt{x-1}-2}{\sqrt{x+1}}\right|+C$ $\frac{1}{2}\log\left|\frac{\sqrt{x+1}-1}{\sqrt{x+1}+1}\right|+C$ $\log\left|\frac{\sqrt{x-1}-2}{\sqrt{x+1}+2}\right|+C$ |
$\log\left|\frac{\sqrt{x-1}-2}{\sqrt{x+1}+2}\right|+C$ |
The correct answer is Option (4) → $\log\left|\frac{\sqrt{x-1}-2}{\sqrt{x+1}+2}\right|+C$ Evaluate: $\displaystyle \int \frac{2}{(x - 3) \sqrt{x + 1}} \, dx$ Substitute: $t = \sqrt{x + 1} \Rightarrow x = t^2 - 1$, so $dx = 2t \, dt$ Rewrite integral in terms of $t$: $\int \frac{2}{(t^2 - 1 - 3) \cdot t} \cdot 2t \, dt = \int \frac{4t}{(t^2 - 4) t} \, dt = \int \frac{4}{t^2 - 4} \, dt$ Simplify denominator: $t^2 - 4 = (t - 2)(t + 2)$ Use partial fractions: $\frac{4}{(t - 2)(t + 2)} = \frac{A}{t - 2} + \frac{B}{t + 2}$ Multiply both sides by $(t - 2)(t + 2)$: $4 = A (t + 2) + B (t - 2)$ Set $t = 2$: $4 = A (4) + B (0) \Rightarrow A = 1$ Set $t = -2$: $4 = A (0) + B (-4) \Rightarrow B = -1$ Therefore: $\int \frac{4}{t^2 - 4} dt = \int \left( \frac{1}{t - 2} - \frac{1}{t + 2} \right) dt = \ln|t - 2| - \ln|t + 2| + C = \ln \left| \frac{t - 2}{t + 2} \right| + C$ Substitute back $t = \sqrt{x + 1}$: ${ \int \frac{2}{(x - 3) \sqrt{x + 1}} \, dx = \ln \left| \frac{\sqrt{x + 1} - 2}{\sqrt{x + 1} + 2} \right| + C }$ |