The minimum energy required to launch a satellite of mass $m$ from the surface of earth of mass $M$ and radius $R$ in a circular orbit at an altitude of $2R$ from the surface of the earth is: |
$\frac{5GmM}{6R}$ $\frac{2GmM}{3R}$ $\frac{GmM}{2R}$ $\frac{GmM}{3R}$ |
$\frac{5GmM}{6R}$ |
The correct answer is option (1) : $\frac{5GmM}{6R}$ Apply energy conservation. $U_i+K_i=U_f+K_f$ $⇒-\frac{GMm}{R}+K_i=-\frac{GMm}{3R}+\frac{1}{2}mv^2$ $⇒-\frac{GMm}{R}+K_i=-\frac{GMm}{3R}+\frac{1}{2}×m×\frac{GM}{3R}$ $⇒K_i=-\frac{1}{6}\frac{GMm}{R}+\frac{GMm}{R}$ $K_i=\frac{5}{6}\frac{GMm}{R}$ |