Match List-I with List-II.
Choose the correct answer from the options given below : | ||||||||||||||||||||
(A)-(II),(B)-(IV),(C)-(I),(D)-(III) (A)-(III),(B)-(I),(C)-(IV),(D)-(II) (A)-(II),(B)-(I),(C)-(IV),(D)-(III) (A)-(IV),(B)-(I),(C)-(III),(D)-(II) |
(A)-(III),(B)-(I),(C)-(IV),(D)-(II) |
The correct answer is Option (2) → (A)-(III),(B)-(I),(C)-(IV),(D)-(II) (A) $y=\log_e\left(\frac{x^2}{e^3}\right)⇒\frac{dy}{dx}=\frac{e^3}{x^2}×\frac{2x}{e^3}=\frac{2}{x}⇒\frac{d^2y}{dx^2}=\frac{-2}{x^2}$ (III) (B) $y=x^4\log_ex⇒\frac{dy}{dx}4x^3\log_ex+x^3⇒\frac{d^2y}{dx^2}=12x^2\log x+4x^2+3x^2=12x^2\log x+7x^2$ (I) (C) $y=x^3e^x⇒\frac{dy}{dx}=3x^2e^x+x^3e^x⇒\frac{d^2y}{dx^2}=6xe^x+3x^2e^x+x^3e^x+3x^2e^x$ (IV) (D) $y=\frac{\log_ex}{x}⇒\frac{dy}{dx}=\frac{\frac{1}{x}×x+\frac{\log x}{x^2}}{x^2}⇒\frac{d^2y}{dx^2}=\frac{2\log x-3}{x^3}$ (II) |