The order and degree of differential equation $\sqrt[3]{2 y+\frac{d y}{d x}}=\left(x+\frac{d^3 y}{d x^3}\right)$ respectively are: |
3, 1 3, 3 1, 1 2, 2 |
3, 3 |
The correct answer is Option (2) → 3, 3 $\sqrt[3]{2 y+\frac{d y}{d x}}=\left(x+\frac{d^3 y}{d x^3}\right)$ $⇒\left(2y+\frac{d y}{d x}\right)^3=\left(x+\frac{d^3 y}{d x^3}\right)^3$ $=x^3+\left(\frac{d^3 y}{d x^3}\right)^3+3x\frac{d^3 y}{d x^3}\left(x+\frac{d^3 y}{d x^3}\right)$ ∴ Order = Highest order derivative = 03 Degree = Power of highest order derivative = 03 |