The electron in a hydrogen atom emits wavelengths $λ_1, λ_2, λ_3$ and $λ_4$ in the following transitions (A), (B), (C) and (D), respectively. Arrange the transitions in the increasing order of emitted wavelengths. (A) n=3 to n=2 Choose the correct answer from the options given below: |
(A), (B), (C), (D) (A), (C), (B), (D) (D), (A), (B), (C) (D), (C), (A), (B) |
(D), (C), (A), (B) |
The correct answer is Option (4) → (D), (C), (A), (B) Use the hydrogen atom formula: $\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$ (A) $n=3 \to n=2$: $\frac{1}{\lambda_1} = R \left(\frac{1}{2^2} - \frac{1}{3^2}\right) = R \cdot \frac{5}{36}$ (B) $n=4 \to n=3$: $\frac{1}{\lambda_2} = R \left(\frac{1}{3^2} - \frac{1}{4^2}\right) = R \cdot \frac{7}{144}$ (C) $n=4 \to n=2$: $\frac{1}{\lambda_3} = R \left(\frac{1}{2^2} - \frac{1}{4^2}\right) = R \cdot \frac{3}{16}$ (D) $n=2 \to n=1$: $\frac{1}{\lambda_4} = R \left(1 - \frac{1}{2^2}\right) = R \cdot \frac{3}{4}$ Decimal approximations: $\frac{1}{\lambda_1} \approx 0.1389 R$ $\frac{1}{\lambda_2} \approx 0.0486 R$ $\frac{1}{\lambda_3} = 0.1875 R$ $\frac{1}{\lambda_4} = 0.75 R$ Increasing order of emitted wavelengths: $\lambda_4 < \lambda_3 < \lambda_1 < \lambda_2$ |