The molar conductance at infinite dilution of BaCl2, NaCl and NaOH are respectively 280x10-4 ,126.5x10-4 ,248x10-4 Sm2mol-1.What is the molar conductance of Ba(OH)2 at infinite dilution? |
523 x 10-4 Sm2mol-1 52.3 x 10-4 Sm2mol-1 5.23 x 10-4 Sm2mol-1 65 x 10-4 Sm2mol-1 |
523 x 10-4 Sm2mol-1 |
The correct answer is option 1. \(523 \times 10^{-4}\, \ Sm^2mol^{-1}\). The molar conductance at infinite dilution of the given electrolytes are: \(\Lambda _{BaCl_2} = \Lambda _{Ba^{2+}} + 2\Lambda _{Cl^-} = 280 \times 10^{-4}\, \ Sm^2mol^{-1} ----(i)\) \(\Lambda _{NaCl} = \Lambda _{Na^+} + \Lambda _{Cl^-} = 126.5 \times 10^{-4}\, \ Sm^2mol^{-1} ----(ii)\) \(\Lambda _{NaOH} = \Lambda _{Na^+} + \Lambda _{OH^-} = 248 \times 10^{-4}\, \ Sm^2mol^{-1} ----(iii)\) Equating equation (i) + 2 × (iii) - 2(ii), we get \(\Lambda _{BaCl_2} + 2\times \Lambda _{NaOH} - 2\times \Lambda _{NaCl} = \Lambda _{Ba^{2+}} + 2\Lambda _{Cl^-} + 2 \times [\Lambda _{Na^+} + \Lambda _{OH^-}] - 2 \times [\Lambda _{Na^+} + \Lambda _{Cl^-}]\) \(⇒ 280 \times 10^{-4} + 2[248 \times 10^{-4}] - 2[126.5 \times 10^{-4}] = \Lambda _{Ba^{2+}} + 2\Lambda _{OH^-}\) \(⇒ \Lambda _{Ba^{2+}} + 2\Lambda _{OH^-} = 523 \times 10^{-4}\) \(⇒ \Lambda _{Ba(OH)_2} = 523 \times 10^{-4}\, \ Sm^2mol^{-1}\) |