The volume of a cube is increasing at a rate of 9 cubic centimeter per second. Then rate of change of surface area when the length of an edge is 10 centimeter is: |
36.6 cm2/s 0.36 cm2/s 36 cm2/s 3.6 cm2/s |
3.6 cm2/s |
The correct answer is Option (4) → 3.6 cm2/s S → slop of cube $\frac{dv}{dt}=9$, $v=s^3$ so $3s^2\frac{ds}{dt}=9$ $\frac{ds}{dt}=\frac{3}{s^2}$ Surface area $A = 6s^2$ $\frac{dA}{dt}=12s\frac{ds}{dt}$ $⇒\frac{dA}{dt}=\frac{125×3}{s^2}=\frac{36}{s}$ at $s=\frac{dA}{dt}=3.6cm^2/s$ |