One mole of a diatomic gas undergoes a process : \(P = \frac{P_o}{1 + (\frac{V}{V_o})^3}\) where Po and Vo are constants. The translational kinetic energy of the gas when V = Vo is given by : |
\(\frac{5P_o V_o}{4}\) \(\frac{3P_o V_o}{4}\) \(\frac{3P_o V_o}{2}\) \(\frac{5P_o V_o}{2}\) |
\(\frac{3P_o V_o}{4}\) |
\(P = \frac{P_o}{1 + (\frac{V}{V_o})^3 } = \frac{P_o}{2}\) \(T = \frac{P_o V_o}{2R}\) Therefore translational kinetic energy is equal to : \(\frac{3}{2}RT = \frac{3R}{2} \frac{P_o V_o}{2R}\) \(\frac{3}{2}RT = \frac{3P_o V_o}{4}\) |