The Probability mass functions of Random variable X is : $P(X=x) = (0.6)^x(0.4)^{1-x}; x=0, 1 $ The variance of X is : |
0.60 0.124 0.244 0.24 |
0.24 |
The correct answer is Option (4) → 0.24 The probability mass function (PMF) of the random variable X is, $P(X=x)=(0.6)^x(0.4)^{1-x}$ The expectation (Mean) of X is, $E(X)=∑xP(X=x)$ $=0.P(X=0)+1.P(X=1)$ $=0.(0.6)^0(0.4)^1+(0.6)^1(0.4)^01$ $=0+0.6$ $=0.6$ $E(X^2)=∑x^2P(X=x)$ $=0^2P(X=0)+1^2P(X=1)$ $=1×0.6=0.6$ $Var(X)=E(X^2)-(E(X))^2$ $=0.6-0.36$ $=0.24$ |