A transmitting station transmits radio waves of wavelength 300 m. The inductance of the coil required with a capacitor of capacity 1.0 μF in a resonant circuit will be |
$1.27 × 10^{-9} H$ $2.53 × 10^{-8} H$ $2.73 × 10^{-6} H$ $2.53 × 10^{-7} H$ |
$2.53 × 10^{-8} H$ |
The correct answer is Option (2) → $2.53 × 10^{-8} H$ Given: Wavelength, $\lambda = 300\ \text{m}$ Capacitance, $C = 1.0\ \mu\text{F} = 1.0 \times 10^{-6}\ \text{F}$ Speed of light, $c = 3 \times 10^8\ \text{m/s}$ Frequency of wave: $f = \frac{c}{\lambda} = \frac{3 \times 10^8}{300} = 1 \times 10^6\ \text{Hz}$ For resonance in an LC circuit: $f = \frac{1}{2\pi \sqrt{LC}}$ Rearrange for $L$: $L = \frac{1}{(2\pi f)^2 C}$ Substitute values: $L = \frac{1}{(2\pi \cdot 10^6)^2 \cdot 1 \times 10^{-6}}$ $L = \frac{1}{4\pi^2 \cdot 10^{12} \cdot 10^{-6}}$ $L = \frac{1}{4\pi^2 \cdot 10^6}$ $L \approx \frac{1}{39.5 \cdot 10^6} \approx 2.53 \times 10^{-8}\ \text{H}$ |