A current of 15 A flows in a wire of cross-sectional area $5\, mm^2$ with a drift velocity of $3 × 10^{-3} m/s$. The electron density in the wire will be |
$489 × 10^{25} m^{-3}$ $546 × 10^{25} m^{-3}$ $725 × 10^{23} m^{-3}$ $625 × 10^{25} m^{-3}$ |
$625 × 10^{25} m^{-3}$ |
The correct answer is Option (2) → $546 × 10^{25} m^{-3}$ Given: Current: $I = 15 \,\text{A}$ Cross-sectional area: $A = 5 \,\text{mm}^2 = 5 \times 10^{-6} \,\text{m}^2$ Drift velocity: $v_d = 3 \times 10^{-3} \,\text{m/s}$ Charge of electron: $e = 1.6 \times 10^{-19} \,\text{C}$ Formula: $I = n e A v_d$ $n = \frac{I}{e A v_d}$ $n = \frac{15}{(1.6 \times 10^{-19})(5 \times 10^{-6})(3 \times 10^{-3})}$ Denominator = $(1.6 \times 5 \times 3) \times 10^{-19 -6 -3}$ Denominator = $24 \times 10^{-28} = 2.4 \times 10^{-27}$ $n = \frac{15}{2.4 \times 10^{-27}} = 6.25 \times 10^{27} \,\text{m}^{-3}$ Final Answer: $6.25 \times 10^{27} \,\text{m}^{-3}$ |