If $\theta $ is the angle between any two vectors $\vec{a}$ and $\vec{b}$, then $|\vec{a}.\vec{b}|=|\vec{a}×\vec{b}|$ for $\theta $ equal to ________. |
$\pi $ 0 $\frac{\pi }{2}$ $\frac{\pi }{4}$ |
$\frac{\pi }{4}$ |
The correct answer is Option (4) → $\frac{\pi }{4}$ $|\vec{a}.\vec{b}|=|\vec{a}×\vec{b}|$ $⇒|\vec{a}||\vec{b}|\cos θ=|\vec{a}||\vec{b}|\sin θ$ so $\cos θ=\sin θ⇒θ=\frac{\pi }{4}$ |