If the angle between $\vec a=2y^2\hat i+4y\hat j+\hat k$ and $\vec b=7\hat i-2\hat j+y\hat k$ is obtuse, then: |
$-\frac{1}{2}<y<0$ $-1<y<-\frac{1}{2}$ $\frac{1}{2}<y<1$ $0<y<\frac{1}{2}$ |
$0<y<\frac{1}{2}$ |
The correct answer is Option (4) → $0<y<\frac{1}{2}$ for an angle to be obtuse, we must have, $a.b=|a||b|\cos θ$ where, $a.b<0$ $∴a.b=(2y^2)(7)+(4y)(-2)+(1)(y)$ $=14y^2-7y$ and, $⇒14y^2-7y$ $7y(2y-1)<0$ Critical points are 0 and $\frac{1}{2}$ and, for $0<y<\frac{1}{2}$ $7y$ is positive $(2y-1)$ is negative $∴(7y)(2y-1)<0\,∀\,0<y<\frac{1}{2}$ |