A deutron and an $α$-particle moving with the same velocity enter into a uniform magnetic field acting normal to the plane of their motion. The ratio of the circular paths described by the deutron and $α$-particle is |
1 : 2 1 : 1 2 : 1 4 : 1 |
1 : 1 |
The correct answer is Option (2) - 1 : 1 The radius (r) of the circular path of a charged particle with velocity (v) and magnetic field (B). $r=\frac{mV}{qB}$ where, q → charge of particle v → velocity of particle $r_{deuteron}=\frac{m_{deuteron}V}{q_{deuteron}B}=\frac{2m_pV}{eB}$ $r_{α-particle}=\frac{m_{α}V}{q_{α}B}=\frac{4m_pV}{2eB}=\frac{2m_pV}{eB}$ $\frac{V_{α}}{d_{deuteron}}=\frac{\frac{2m_pV}{eB}}{\frac{2m_pV}{eB}}=1$ |