Value of $\int\left(\frac{1}{\log x}-\frac{1}{(\log x)^2}\right)dx$ is |
$\frac{x}{\log x} + c$, where c is an arbitrary constant $x\log x + c$, where c is an arbitrary constant $\frac{1}{\log x} + c$, where c is an arbitrary constant $\frac{e^x}{\log x} + c$, where c is an arbitrary constant |
$\frac{x}{\log x} + c$, where c is an arbitrary constant |
The correct answer is Option (1) → $\frac{x}{\log x} + c$, where c is an arbitrary constant $I = \int \left(\frac{1}{\log x} - \frac{1}{(\log x)^2}\right) \, dx$ Let $\log x = t \Rightarrow dx = e^t \, dt$. $I = \int \frac{1}{t} e^t \, dt - \int \frac{1}{t^2} e^t \, dt$ Using integration by parts for the second term: $\int \frac{1}{t^2} e^t \, dt = -\frac{e^t}{t} + \int \frac{e^t}{t} \, dt$ Combining both integrals: $I = \int \frac{e^t}{t} \, dt - \left(-\frac{e^t}{t} + \int \frac{e^t}{t} \, dt\right)$ $= \frac{e^t}{t} = \frac{x}{\log x} + C$ |