If A is a 3 × 3 matrix such that $|\text{adj A}| = 9$ and $|kA^{-1}|= 9$, then the value of k are: |
$±1$ $±\frac{1}{3}$ $±3$ $±\frac{1}{9}$ |
$±3$ |
The correct answer is Option (3) → $±3$ Given:
For any invertible $3 \times 3$ matrix $A$: $| \text{adj} \, A | = |A|^2$ So, $|A|^2 = 9 \Rightarrow |A| = \pm 3$ Also, $|kA^{-1}| = |kI \cdot A^{-1}| = k^3 \cdot |A^{-1}|$ $|A^{-1}| = \frac{1}{|A|} = \frac{1}{\pm 3}$ So, $k^3 \cdot \frac{1}{\pm 3} = 9$ $\Rightarrow k^3 = 9 \cdot (\pm 3) = \pm 27$ $\Rightarrow k = 3$ or $k = -3$ |