Solution of the differential equation $y e^{x / y} d x=\left(x e^{x / y}+y^2 \sin y\right) d y$, is |
$e^{x / y}=\cos y+C$ $e^{x / y}=-\sin y+C$ $e^{y / x}=-\cos y+C$ $e^{x / y}=-\cos y+C$ |
$e^{x / y}=-\cos y+C$ |
We have, $y e^{x / y} d x=\left(x e^{x / y}+y^2 \sin y\right) d y$ $\Rightarrow (y d x-x d y) e^{x / y}=y^2 \sin y d y$ $\Rightarrow e^{x / y}\left\{\frac{y d x-x d y}{y^2}\right\}=\sin y d y$ $\Rightarrow e^{x / y} d\left(\frac{x}{y}\right)=-d(\cos y)$ On integrating, we obtain $e^{x / y}=-\cos y+C$, as the required solution. |