If the curves $y=a^x$ and $y=e^x$ intersect at an angle $\alpha$, then $\tan \alpha$ equals |
$\left|\frac{\log _e a}{1+\log _e a}\right|$ $\left|\frac{1+\log _e a}{1-\log _e a}\right|$ $\left|\frac{\log _e a-1}{\log _e a+1}\right|$ none of these |
$\left|\frac{\log _e a-1}{\log _e a+1}\right|$ |
The equations of the two curves are $C_1: y=a^x$ .....(i) and $C_2: y=e^x$ .....(ii) At the point of intersection of these two curves, we must have $a^x=e^x \Rightarrow\left(\frac{a}{e}\right)^x=1 \Rightarrow x=0$ Putting x = 0 in any one of the two curves, we get y = 1 Thus, the two curves intersect at P(0, 1). Clearly, at the point P(0, 1) $\left(\frac{d y}{d x}\right)_{C_1}=\log _e a$ and $\left(\frac{d y}{d x}\right)_{C_2}=1$ ∴ $\tan \alpha=\left|\frac{\left(\frac{d y}{d x}\right)_{C_1}-\left(\frac{d y}{d x}\right)_{C_2}}{1+\left(\frac{d y}{d x}\right)_{C_1} \times\left(\frac{d y}{d x}\right)_{C_2}}\right| \Rightarrow \tan \alpha=\mid \frac{\log _e a-1}{\log _e a+1 \mid}$ |