Let $f (x)=x^3-6x^2 +12x-3$, then at $x=2$, f(x) has: |
a maximum a minimum both a maximum and a minimum neither a maximum nor a minimum |
neither a maximum nor a minimum |
The correct answer is Option (4) → neither a maximum nor a minimum $f (x)=x^3-6x^2 +12x-3$ for maxima and minima, $f'(x)=0$ $⇒3x^2-12x+12=0$ $⇒x^2-4x+4=0$ $⇒(x-2)^2=0$ $⇒x=2\,or\,2$ Now, $f''(x)=2x-4$ $⇒f''(2)=0$ Hence at $x=2$, neither maxima nor minima. |