The value of $\int\limits_0^{π/2}\frac{\tan^{7} x}{\cot^7 x + \tan^7 x}dx$ is |
$π/2$ $π/3$ $π/4$ $π/6$ |
$π/4$ |
The correct answer is Option (3) → $π/4$ Consider the integral: $I = \int_0^{\pi/2} \frac{\tan^7 x}{\cot^7 x + \tan^7 x} \, dx$ Use symmetry property: $\int_0^{\pi/2} f(x) \, dx = \int_0^{\pi/2} f\left(\frac{\pi}{2}-x\right) \, dx$ Let $x \to \frac{\pi}{2}-x$: $\tan\left(\frac{\pi}{2}-x\right) = \cot x$, $\cot\left(\frac{\pi}{2}-x\right) = \tan x$ Then: $I = \int_0^{\pi/2} \frac{\cot^7 x}{\tan^7 x + \cot^7 x} \, dx$ Add the two forms: $2I = \int_0^{\pi/2} \frac{\tan^7 x + \cot^7 x}{\tan^7 x + \cot^7 x} \, dx = \int_0^{\pi/2} 1 \, dx = \frac{\pi}{2}$ Thus: $I = \frac{\pi}{4}$ |