Let $F$ be the family of ellipses whose centre is the origin and major axis is the $y$-axis. Then the differential equation of family $F$ is |
$\frac{d^2 y}{d x^2}+\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$ $x y \frac{d^2 y}{d x^2}-\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$ $x y \frac{d^2 y}{d x^2}+\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$ $\frac{d^2 y}{d x^2}-\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$ |
$x y \frac{d^2 y}{d x^2}+\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$ |
Let the equation of the family F of required ellipses be $A x^2+B y^2=1$ ......(i) It is a two parameter family of curves. Differentiating (i) with respect to $x$, we get $A x+B y y_1=0$ .....(ii) Differentiating (ii) with respect to $x$, we get $A+B y_1{ }^2+B y y_2=0$ .......(iii) Multiplying (iii) by $x$ and subtracting from (ii), we get $B \left\{y y_1-x y_1^2-x y y_2\right\}=0$ $\Rightarrow x y y_2+y_1\left(x y_1-y\right)=0 \Rightarrow x y \frac{d^2 y}{d x^2}+\frac{d y}{d x}\left(x \frac{d y}{d x}-y\right)=0$ This is the required differential equation. |