There is a pyramid on a regular hexagon base of side 2a cm. If every slant edge is of length \(\frac{5a}{2}\) cm, then the volume of this pyramid is - |
3√3 a³ cm³ 6√3 a³ cm³ 18 a³ cm³ 27 a³ cm³ |
3√3 a³ cm³ |
⇒ Area of base = 6 × \(\frac{\sqrt {3}}{4}\) × (2a)2 = 6 \(\sqrt {3}\) a2 cm2 ⇒ Height = \(\sqrt{(slant\;edge)^2 - (side)^2 }\) = \(\sqrt {\frac{25a^2}{4} - 4a^2 }\) = \(\frac{\sqrt {9a^2}}{\sqrt {4}}\) = \(\frac{3}{2}\)a ⇒ Volume of pyramid = \(\frac{1}{3}\) × area of base × height = \(\frac{1}{3}\) × 6\(\sqrt{3}\)a² × \(\frac{3}{2}\)a = 3\(\sqrt{3}\) a3 cm3 |