For the principal value branch, the value of $\sin\left(\frac{\pi}{2}-\sin^{-1}(-\frac{\sqrt{3}}{2})\right)$ is |
$\frac{1}{\sqrt{2}}$ $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $-\frac{\sqrt{3}}{2}$ |
$\frac{1}{2}$ |
The correct answer is Option (3) → $\frac{1}{2}$ Given expression: $\sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{3}{\sqrt{2}}\right)\right)$ Use identity: $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$ So, $= \cos\left(\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$ Let $\theta = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ Then, $\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{1 - \frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$ |