What will be the value of \(\frac{1 + a}{(a)^\frac{1}{2}+ (a)^\frac{-1}{2}}\) - \(\frac{(a)^\frac{1}{2} + (a)^\frac{-1}{2}}{1 + a}\) + (a)-\(\frac{1}{2}\) |
\(\sqrt {a}\) \(\frac{1}{\sqrt {a}}\) \(\sqrt {a}\) + 1 \(\sqrt {a}\) - 1 |
\(\sqrt {a}\) |
All options are in under root of a so put the value of a = square of any number Let a = 4 So, \(\frac{1 + 4}{\sqrt {4} + \frac{1}{\sqrt {4}}}\) - \(\frac{\sqrt {4} + \frac{1}{\sqrt {4}}}{1 + 4}\) + \(\frac{1}{\sqrt {4}}\) = \(\frac{5}{2.5}\) - \(\frac{2.5}{5}\) + \(\frac{1}{2}\) = \(\frac{5}{2.5}\) = 2 Satisfy from option Take option a = \(\sqrt {a}\) = \(\sqrt {4}\) = 2 (Satisfied) |