A rectangle of length ‘x’ and breadth ‘y’ is inscribed in a semi-circle of fixed radius ‘r’ as shown in the figure given below. Based on the above information answer the following question: |
Dimensions x, y of the rectangle ABCD, when area is maximum are: |
\(r\frac{\sqrt{3}}{2}, \frac{2r}{\sqrt{3}}\) \(r\sqrt{2}, \frac{r}{\sqrt{2}}\) \(\frac{r}{\sqrt{2}}, \sqrt{2r}\) \(r , \frac{r}{\sqrt{2}}\) |
\(r\sqrt{2}, \frac{r}{\sqrt{2}}\) |
$A'=0$ $⇒θ=\frac{\pi}{4}$ $x = 2rcosθ$ $y=rsinθ$ $x=\frac{2r}{\sqrt{2}}$ $y=\frac{r}{\sqrt{2}}$ $⇒x=\frac{2r}{\sqrt{2}}×\frac{\sqrt{2}}{\sqrt{2}}=\frac{2\sqrt{2}r}{2}=\sqrt{2}r$ $y=\frac{r}{\sqrt{2}}×\frac{\sqrt{2}}{\sqrt{2}}=\frac{r\sqrt{2}}{2}\, or\, \frac{r}{\sqrt{2}}$ So, option B is correct. |