If A is an invertible matrix of order 2 ; then $det(A^{-1})$ is equal to : |
1 $\frac{1}{det(A)}$ det(A) 0 |
$\frac{1}{det(A)}$ |
let $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ so $|A| = A_{11} A_{22}-A_{21} A_{12}$ finding cofactors of A $C_{11}=A_{22} ~~C_{12}=-A_{21}$ $C_{21}=-A_{12} ~~C_{22}=A_{11}$ Adj A = $\left[\begin{array}{cc}A_{22} & -A_{21} \\ -A_{12} & A_{11}\end{array}\right]^T$ ⇒ Adj A = $\left[\begin{array}{cc}A_{22} & -A_{12} \\ -A_{21} & A_{11}\end{array}\right]$ $A^{-1}=\frac{1}{|A|} Adj~ A = \frac{1}{|A|}\left[\begin{array}{cc} so $\left|A^{-1}\right|=\frac{1}{|A|^2}\left[A_{22} A_{11}-A_{12} A_{21}\right]$ $= \frac{|A|}{|A|^2}=\frac{1}{|A|}$ |