Let O, O' and G be the circumcentre, orthocentre and centroid of a ΔABC and S be any point in the plane of the triangle. Statement-1: $\vec{O'A}+\vec{O'B}+\vec{O'C} = 2\vec{O'O}$ Statement-2: $\vec{SA} + \vec{SB} + \vec{SC} = 3 \vec{SG}$ |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. |
We have, $\vec{SA} + \vec{SB} + \vec{SC} =\vec{SA} + (\vec{SB} + \vec{SC})$ $⇒\vec{SA} + \vec{SB} + \vec{SC} = \vec{SA} + 2 \vec{SD}$ [∵ D is the mid-point of BC] $⇒\vec{SA} + \vec{SB} + \vec{SC} =(1+2) \vec{SG} = 3 \vec{SG}$ So, statement-2 is true. Replacing S by O' in statement-2, we get $\vec{O'A}+\vec{O'B}+\vec{O'C} = 3\vec{O'G}$ $⇒\vec{O'A}+\vec{O'B}+\vec{O'C} =2\vec{O'G}+\vec{O'G}$ $⇒\vec{O'A}+\vec{O'B}+\vec{O'C} =2\vec{O'G}+2\vec{GO}$ $[∵ 2OG = GO']$ $⇒\vec{O'A}+\vec{O'B}+\vec{O'C} =2(\vec{O'G}+\vec{GO})$ $⇒\vec{O'A}+\vec{O'B}+\vec{O'C} =2\vec{O'O}$ So, statement-1 is true and statement-2 is a correct explanation for statement-1. |