If $f: R → R$ be given by $f(x)=\left(3-x^3\right)^{\frac{1}{3}}$, then $(f o f)(x)$ is: |
$3-x^3$ $x$ $x^3$ $x^{\frac{1}{3}}$ |
$x$ |
The correct answer is Option (2) → $x$ $(f o f(x)=f(f(x))$ $=f((3-x^3)^{\frac{1}{3}})$ $=(3-((3-x^3)^{\frac{1}{3}})^3)^{\frac{1}{3}}$ $=(x^3)^{\frac{1}{3}}=x$ |