Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Algebra

Question:

If $\begin{bmatrix}a+2 & 3b+2c\\c+3&7d+6\end{bmatrix}=\begin{bmatrix}2 & -3\\3c& -8\end{bmatrix},$ then the values of a, b, c and d are,

Options:

$a=-2, b=0, c=-3, d=-2$

$a=0,b=-2, c=-2, d=\frac{3}{2}$

$a=-1,b=-3, c=-\frac{3}{2}, d=2$

$a=0, b=-2, c=\frac{3}{2}, d=-2$

Correct Answer:

$a=0, b=-2, c=\frac{3}{2}, d=-2$

Explanation:

The correct answer is Option (4) → $a=0, b=-2, c=\frac{3}{2}, d=-2$

$\begin{bmatrix}a+2 & 3b+2c\\c+3&7d+6\end{bmatrix}=\begin{bmatrix}2 & -3\\3c& -8\end{bmatrix}$

$⇒a+2=2$

$⇒a=0$

and, $⇒7d+6=-8$

$⇒7d=-14$

$⇒d=-2$

and, $⇒c+3=3c$

$⇒3=2c$

$⇒c=\frac{3}{2}$

and, $3b+2c=-3$

$⇒3b+3=-3$

$⇒3b=-3-3=-6$

$⇒b=-2$