$\int \tan ^{-1} \sqrt{\frac{1-x}{1+x}} d x=$ |
$\frac{1}{2}\left(x \cos ^{-1} x-\sqrt{1-x^2}\right)+C$ $\frac{1}{2}\left(x \cos ^{-1} x+\sqrt{1-x^2}\right)+C$ $\frac{1}{2}\left(x \sin ^{-1} x-\sqrt{1-x^2}\right)+C$ ($\frac{1}{2}\left(x \sin ^{-1} x+\sqrt{1-x^2}\right)+C$ |
$\frac{1}{2}\left(x \cos ^{-1} x-\sqrt{1-x^2}\right)+C$ |
We have, $2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ ∴ $\tan ^{-1} \sqrt{\frac{1-x}{1+x}}=\frac{1}{2} \cos ^{-1}\left(\frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}}\right)=\frac{1}{2} \cos ^{-1} x$ Thus, we have $I=\int \tan ^{-1} \sqrt{\frac{1-x}{1+x}} d x$ $\Rightarrow I=\frac{1}{2} \int \cos ^{-1} x d x$ $\Rightarrow I=\frac{1}{2}\left\{x \cos ^{-1} x-\int \frac{-1}{\sqrt{1-x^2}} \times x d x\right\}$ $\Rightarrow I=\frac{1}{2}\left\{x \cos ^{-1} x-\frac{1}{2} \int \frac{-2 x}{\sqrt{1-x^2}} d x\right\}$ $\Rightarrow I=\frac{1}{2}\left\{x \cos ^{-1} x-\sqrt{1-x^2}\right\}+C$ |