If $y=x^3log\, x,$ then $\frac{d^2y}{dx^2}$ is : |
$5+6log\, x$ $x(3+2\, log \, x)$ $x(5 + 6\, log x)$ $x^2(3+2\, log \, x)$ |
$x(5 + 6\, log x)$ |
The correct answer is Option (3) → $x(5 + 6\log x)$ $y=x^3\log x$ $⇒\frac{dy}{dx}=3x^2\log x+x^2$ $⇒\frac{d^2y}{dx^2}=3(2x\log x+x)+2x$ $=6x\log x+5x$ $=x(6\log x+5)$ |