If $tan x =\frac{m}{n}$ and 0° ≤ x ≤ 90°, then the value of (sinx + cos x) is : |
$\frac{1}{\sqrt{m^2-n^2}}$ $\frac{1}{\sqrt{m^2+n^2}}$ $\frac{m+n}{\sqrt{m^2+n^2}}$ $\sqrt{m^2-n^2}$ |
$\frac{m+n}{\sqrt{m^2+n^2}}$ |
tanx = \(\frac{m }{n}\) { tanx = \(\frac{P }{B}\) } By using pythagoras theorem , P² + B² = H² m² + n² = H² H = \(\sqrt {m² + n² }\) Now, sinx + cosx = \(\frac{P }{H}\) + \(\frac{B }{H}\) = $\frac{m}{\sqrt{m^2+n^2}}$ + $\frac{n}{\sqrt{m^2+n^2}}$ = $\frac{m+n}{\sqrt{m^2+n^2}}$ |