Consider the following hypothesis test. $H_0:μ≤ 12$ If a sample of 25 is taken with sample mean 15 and a sample standard deviation of 6, then the value of t-test statistic is: |
$\frac{3}{4}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ |
$\frac{5}{2}$ |
The correct answer is Option (4) → $\frac{5}{2}$ Given$H_0: \mu \le 12$, $H_a: \mu > 12$ Sample size: $n = 25$, sample mean: $\bar{x} = 15$, sample standard deviation: $s = 6$ t-test statistic formula: $t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$ Substitute values: $t = \frac{15 - 12}{6 / \sqrt{25}} = \frac{3}{6/5} = \frac{3}{1.2} = 2.5$ |