If $tan^{-1}x=y,$ then |
$x \in R, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), y \in R$ $x \in R, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $x \in [-1, 1], y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ |
$x \in R, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ |
The correct answer is Option (1) → $x \in R, y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ $\tan^{-1}x=y$ y = range of $\tan^{-1}x=(-\frac{π}{2},\frac{π}{2})$ $x∈R,y∈(-\frac{π}{2},\frac{π}{2})$ |