If $p+\frac{1}{p}= 112,$ find $(p - 112)^{15}+\frac{1}{p^{15}}$. |
10 0 15 1 |
0 |
If $p+\frac{1}{p}= 112,$ find $(p - 112)^{15}+\frac{1}{p^{15}}$ If $p+\frac{1}{p}= 112,$ = p - 112 = -$\frac{1}{p}$ Put this value in required equation, $(p - 112)^{15}+\frac{1}{p^{15}}$ = ( -$\frac{1}{p}$)15 + $\frac{1}{p^{15}}$ = 0 |