The Differential Equation representing the family of tangents to the circle $x^2+y^2 =r^2$, is : |
$\frac{dy}{dx}=0$ $\frac{d^2y}{dx^2}=0$ $\frac{dy}{dx}=a$ $\frac{d^2y}{dx^2}=a$ |
$\frac{d^2y}{dx^2}=0$ |
The correct answer is Option (2) → S$\frac{d^2y}{dx^2}=0$ $x^2+y^2 =r^2$ so differentiating wrt x we get $2x+2y\frac{dy}{dx}=0$ $\frac{dy}{dx}=-frac{x}{y}$ let point of tangent be (a, b) eq:- $y-b=-\frac{a}{b}(x-a)$ $by-b^2=-ax+a^2$ $ax+by=a^2+b^2$ differentiating wrt x $a+b\frac{dy}{dx}=0$ so $\frac{dy}{dx}=-\frac{a}{b}$ $⇒\frac{d^2y}{dx^2}=0$ |