The equation of the normal to the curve $y=(1+x)^y+\sin ^{-1}\left(\sin ^2 x\right)$ at x = 0, is |
$x+y=2$ $x+y=1$ $x-y=1$ none of these |
$x+y=1$ |
We have, $y=(1+x)^y+\sin ^{-1}\left(\sin ^2 x\right)$ ......(i) When x = 0, we have y = 1 Differentiating (i) w.r.t. x, we get $\frac{d y}{d x}=(1+x)^y\left\{\frac{d y}{d x} \log (1+x)+\frac{y}{1+x}\right\}+\frac{\sin 2 x}{\sqrt{1-\sin ^4 x}}$ $\Rightarrow \left(\frac{d y}{d x}\right)_{(0,1)}=1$ So, the equation of the normal at (0, 1) is $y-1=-1(x-0) \Rightarrow x+y=1$ |