Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

If $\int\frac{2^x}{\sqrt{1-4^x}}dx=k\sin^{-1}(f(x))+C$ then:

Options:

$k=\log 2,f(x)=2^x$

$k=\frac{1}{\log 2},f(x)=2^x$

$k=\log 2,f(x)=4^x$

$k=\frac{1}{\log 2},f(x)=4^x$

Correct Answer:

$k=\frac{1}{\log 2},f(x)=2^x$

Explanation:

Let $\int\frac{2^x}{\sqrt{1-4^x}}dx=\frac{1}{\log 2}\int\frac{1}{\sqrt{1-t^2}}dt$

Putting $2^x=t,2^x\log 2\,dx=dt$

$I=\frac{1}{\log 2}\sin^{-1}(\frac{t}{1})+C=\frac{1}{\log 2}\sin^{-1}(2^x)+C⇒k=\frac{1}{\log 2},f(x)=2^x$