If $\frac{secθ+tanθ}{secθ-tanθ}= 5$ and θ is an acute angle, then the value of $\frac{3cos^2θ+1}{3cos^2θ-1}$ is: |
3 2 1 4 |
4 |
Given :- \(\frac{secθ + tanθ }{secθ - tanθ }\) = 5 Now, 5 = \(\frac{secθ + tanθ }{secθ - tanθ }\) 5 = \(\frac{1 + sinθ }{1 - sinθ }\) 5 - 5sinθ = 1 + sinθ sinθ = \(\frac{2 }{3}\) Now, sinθ = \(\frac{P }{H}\) P² + B² = H² 2² + B² = 3² B = √5 cosθ = \(\frac{√5 }{3}\) Now, \(\frac{3 cos²θ + 1 }{3 cos²θ - 1}\) = \(\frac{3 × 5/9 + 1 }{3 × 5/9 - 1}\) = \(\frac{ 5 + 3 }{5 - 3}\) = 4 |