Range of $\sin^{-1}\left(\frac{x^2+1}{x^2+2}\right)$ is |
$\left[0,\frac{π}{2}\right]$ $\left(0,\frac{π}{6}\right)$ $\left[\frac{π}{6},\frac{π}{2}\right)$ none of these |
$\left[\frac{π}{6},\frac{π}{2}\right)$ |
Here, $\frac{x^2+1}{x^2+2}=1-\frac{1}{x^2+2}$ Now, $2≤x^2+2<∞$ for all x ∈ R ⇒ $\frac{1}{2}≥\frac{1}{x^2+2}>0⇒-\frac{1}{2}≤\frac{-1}{x^2+2}<0$ $⇒\frac{1}{2}≤1-\frac{1}{x^2+2}<1⇒\frac{π}{6}≤\sin^{-1}\left(1-\frac{1}{x^2+2}\right)<\frac{π}{2}$ |