$\int\limits^{2}_{1}\frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}}dx=$ |
3 $\frac{3}{2}$ $\frac{1}{2}$ 2 |
$\frac{1}{2}$ |
The correct answer is Option (3) → $\frac{1}{2}$ $I=\int\limits^{2}_{1}\frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}}dx$ ...(1) $I=\int\limits^{2}_{1}\frac{\sqrt{1+2-x}}{\sqrt{3-1-2+x}+\sqrt{1+2x}}dx$ $=\int\limits^{2}_{1}\frac{\sqrt{3-x}}{\sqrt{3-x}+\sqrt{x}}dx$ ...(2) eq. (1) + eq. (2) $2I=\int\limits^{2}_{1}\frac{\sqrt{3-x}+\sqrt{x}}{\sqrt{3-x}+\sqrt{x}}dx$ $2I=\int\limits^{2}_{1}1dx⇒2I=[2-1]$ $I=\frac{1}{2}$ |