Maximize \(z=3z+5y\), subject to constraints: \(x+4y\leq 24,3x+y\leq 21,x+y\leq 9,x\geq0,y\geq 0\) |
\(20\) at \((1,0)\) \(30\) at \((0,6)\) \(37\) at \((4,5)\) \(33\) at \((6,3)\) |
\(37\) at \((4,5)\) |
The correct answer is Option (3) → \(37\) at \((4,5)\) $Z=3x+5y$ $⇒Max.\, Z=Z(4,5)=3×4+5×5=27$ |