CUET Preparation Today
CUET
-- Mathematics - Section B1
Continuity and Differentiability
If f(x)=|x||tanx|, then f′(−π6) is equal to |
(π6)1/√3{2√3π−43log6π} (π6)1/√3{−2√3π+43log6π} (π6)1/√3{2√3π+43log6π} none of these |
(π6)1/√3{−2√3π+43log6π} |
In the neighbourhood of x=−π6, we have |x|=−x and |tanx|=−tanx ∴ f(x)=(−x)−tanx ⇒f(x)=e−tanx.log(−x) ⇒f′(x)=(−x)−tanx{−sec2x.log(−x)−tanxx} ⇒f′(−π6)=(π6)1/√3{−43logπ6−2√3π} ⇒f′(−π6)=(π6)1/√3{43log6π−2√3π} |