The inequality $\frac{5x - 2}{3} - \frac{7x - 3}{5} > \frac{x}{4}$ holds when |
\( x \in (-4, \infty) \) \( x \in (4, \infty) \) \( x \in (-\infty, 2] \) \( x \in (-\infty, 4] \) |
\( x \in (4, \infty) \) |
The correct answer is Option (2) → \( x \in (4, \infty) \) $\text{Given: }\frac{5x-2}{3}-\frac{7x-3}{5}>\frac{x}{4}.$ $\text{LCM of denominators: }60.$ $\Rightarrow 20(5x-2) - 12(7x-3) > 15x.$ $100x - 40 - 84x + 36 > 15x.$ $16x - 4 > 15x.$ $x - 4 > 0.$ $x > 4.$ $\text{Solution: }x>4.$ |